Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We presentSLIDE, a pipeline that enables transient discovery in data from the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), using archival images from the Dark Energy Camera as templates for difference imaging. We apply this pipeline to the recently released Data Preview 1 (DP1; the first public release of Rubin commissioning data) and search for transients in the resulting difference images. The image subtraction, photometry extraction, and transient detection are all performed on the Rubin Science Platform. We demonstrate thatSLIDEeffectively extracts clean photometry by circumventing poor or missing LSST templates. We identified 29 previously unreported transients, 12 of which would not have been detected based on the DP1DiaObjectcatalog.SLIDEwill be especially useful for transient analysis in the early years of LSST, when template coverage will be largely incomplete or when templates may be contaminated by transients present at the time of acquisition. We present multiband light curves for a sample of known transients, along with new transient candidates identified through our search. Finally, we discuss the prospects of applying this pipeline during the main LSST survey. Our pipeline is broadly applicable and will support studies of all transients with slowly evolving phases.more » « lessFree, publicly-accessible full text available November 11, 2026
-
Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
